JTGERS School of Nursing

Introduction

- Health care delivery is dependent on the licensed professional nurse.
- the health of the nurse appears to be worse than the health of the average American (ANA, 2015; ANA & ICG, 2016; Carpenter & Dawson, 2018).
- The nursing population is experiencing:
 - Rates of obesity ranging 23%-61.4% (Keele, 2019)
 - Suicide rate: 18.5% (Davidson, et al., 2019)
 - Substance abuse at a rate of 20% (Ivey, 2015)
 - Depression at 18% prevalence compared to nation prevalence of 9% (Letvak et al., 2012)
 - Health care providers rank third among other occupations for experiencing major depressive disorder (Batalla et al., 2019)

Background and Significance

- Lack of physical activity can contribute to poor self-care
- Low resiliency \rightarrow Burnout (Press Ganey, 2018)
- Night shift nurses are vulnerable to poor health behaviors (Ross) al., 2017).
- The poor health behaviors of the nurse can impact the safety and quality of patient care (Bodenheimer et al., 2014; Dyrbye et al., 2017; Jordan et al., 2015; Jordan et al., 2016).
- Depression and poor health are linked to medical errors (Chesak al., 2015; Melnyk et al., 2018)
- Medical errors are the third leading cause of death in the U.S. (Makary, 2016)

Methodology

- Longitudinal non-experimental hybrid study.
- Population: 29 registered nurses at an academic affiliated 300 bed private hospital
- Gamified competition structure incorporating use of fitness trackers to collect steps and time spent exercising
- Participants used their own fitness trackers that were linked to Google Fit. Nurses were assigned to teams and competed in weekly competition. Winners were determined based on step totals and minutes spent exercising.
- Study occurred over 8.5 weeks in 4 phases:
- **Recruitment phase**

• Research council, advertisement

- **Orientation phase**
 - Consent procedure
 - Google Fit accounts assigned
 - Demographic survey
 - Validated tools- PSS, PSQI, HPLP-II
- **Competition phase**
 - Team formations (3 RNs per team, 11 teams total)
 - 4 nurses were disqualified midcompetition
 - Weekly competition
 - Weekly leaderboards
- **Post-competition phase**
 - Repeated validated tools
 - Qualitative interview

Improving the Physical Activity of the Nurse Through Fitness Tracking and Gamification

Ricky Jewell BSN, RN-BC, CEN, DNP Student, Barbara Caldwell PhD, APN-BC, Mamilda Robinson DNP, APN-BC, Mabel Laforgia DNP, RN, CNL

	Ranks							Sum of
					N	Mea	n Rank	Ranks
	$E_{i} - E_{1}$		Negati	ive Ranks		12	14.29	171.50
				e Ranks	•	15 ^b	13.77	206.50
			Ties			2		
			Tota1			29		
	$S_t - S_t$			ive Ranks		9ª	13.22	119.00
			_	e Ranks		20"	15.80	316.00
			Ties	e realita		0°	10.00	510.00
			Total			29		
	a. $E_i \leq E_1$		1041			45		
	a. El ~ El b. E ₄ > E ₁							
	$c. E_1 = E_1$							
	d. S ₁ < S ₁							
	e. Si > Si							
	$\mathbf{f}_{1} \mathbf{S}_{0} = \mathbf{S}_{1}$							
	$t. S_s = S_1$ Test Statis	tics ^a						
		tics ^a		E4 – E1		4 – SI		
		tics ^a		E ₄ – E ₁ 42		-2.130 ^b		
	<u>Test Statis</u> Z <u>Asymp. Si</u> a. Wilcoxo	g. (2-tail on Signed	ed) I Ranks I	42 .6	0 ^b			
	<u>Test Statis</u> Z <u>Asymp. Si</u> a. Wilcoxo b. Based or Table 2	<u>g. (2-tail</u> m Signed n negativ	ed) I Ranks I	42 .6	0 ^b	-2.130 ^b		
	<u>Test Statis</u> Z <u>Asymp. Si</u> a. Wilcoxo b. Based or	g. (2-tail on Signed n negativ	ed) I Ranks T re ranks.	42) .61 Test	0 ^b 74	-2.130 ^b .033		
	<u>Test Statis</u> Z <u>Asymp. Si</u> a. Wilcoxo b. Based or Table 2	<u>g. (2-tail</u> m Signed n negativ	ed) I Ranks I	42 .6	0 ^b	-2.130 ^b	<u></u>	
	<u>Test Statis</u> Z <u>Asymp. Si</u> a. Wilcoxo b. Based or Table 2	g. (2-tail on Signed n negativ	ed) I Ranks 1 re ranks. Minimum	42) .6 Test Maximum	0 ^h 74 Mean	-2.130 ^b .033 Std. Deviatio	<u></u>	
	Test StatiaZAsymp. Sia. Wilcoxob. Based ofTable 2Descriptive StatisticPSSPre	g. (2-tail on Signed n negativ	ed) Ranks 7 re ranks. Minimum Statistic 18	42 .6 Test Maximum Statistic 26	0 ^h 74 Mean Statistic 21.63	-2.130 ^b .033 Std. Deviatic Statistic 2.187	<u></u>	
	Test Statia Z Asymp. Sig a. Wilcoxo b. Based or Table 2 Descriptive Statistic PSS Pre PSQI	g. (2-tail on Signed n negativ	ed) Ranks 7 re ranks. Minimum Statistic	42 .6 Test Maximum Statistic	0 ^h 74 Mean Statistic	-2.130 ^b .033 Std. Deviatio Statistic	<u></u>	
	Test StatiaZAsymp. Sia. Wilcoxob. Based ofTable 2Descriptive StatisticPSSPre	g. (2-tail on Signed n negativ	ed) Ranks 7 re ranks. Minimum Statistic 18	42 .6 Test Maximum Statistic 26	0 ^h 74 Mean Statistic 21.63	-2.130 ^b .033 Std. Deviatic Statistic 2.187	<u>n</u>	
	Test StatiaZAsymp. Sia. Wilcoxob. Based odb. Based odTable 2Descriptive StatisticPSSPrePSQIPreHPLP-IIPre	g. (2-tail on Signed n negativ	ed) Ranks T re ranks. Minimum Statistic 18 3 2.02	42) .6 Test Maximum Statistic 26 14 3.87	Mean Statistic 21.63 7.60 2.6190	-2.130 ^b .033 Std. Deviatic Statistic 2.187 3.355 .53521	<u>n</u>	
	Test StatiaZAsymp. Sia. Wilcoxob. Based ofb. Based ofTable 2Descriptive StatisticPSSPrePSQIPreHPLP-IIPrePSS	g. (2-tail on Signed n negativ	ed) Ranks 7 re ranks. Minimum Statistic 18 3	42) .6 Test Maximum Statistic 26 14	Mean Statistic 21.63 7.60	-2.130 ^b .033 Std. Deviatic Statistic 2.187 3.355	<u>n</u>	
	Test StatiaZAsymp. Sia. Wilcoxob. Based odb. Based odTable 2Descriptive StatisticPSSPrePSQIPreHPLP-IIPre	g. (2-tail on Signed n negativ	ed) Ranks T re ranks. Minimum Statistic 18 3 2.02	42) .6 Test Maximum Statistic 26 14 3.87	Mean Statistic 21.63 7.60 2.6190	-2.130 ^b .033 Std. Deviatic Statistic 2.187 3.355 .53521	<u>n</u>	
et	Test StatiaZAsymp. Sia. Wilcoxob. Based orb. Based orTable 2Descriptive StatisticPSSPrePSQIPreHPLP-IIPrePSSPost	g. (2-tail on Signed n negativ cs N Statistic 16 15 16 15	ed) Ranks 7 re ranks. Minimum Statistic 18 3 2.02 16.00	42) .6 Test Maximum Statistic 26 14 3.87 27.00	Mean Statistic 21.63 7.60 2.6190 20.0667	-2.130 ^b .033 Std. Deviatic Statistic 2.187 3.355 .53521 3.05817	<u>n</u>	

Table 3

Ranks- Pre and Post Validated Tools Per Shift

				Sum of
	Shift	N	Mean Rank	Ranks
PSS	Day shift	9	7.72	69.50
pre	night shift	7	9.50	66.50
	Total	16		
PSQI Global Score	Day shift	8	5.88	47.00
pre	night shift	7	10.43	73.00
	Total	15		
HPLP-II	Day shift	9	7.89	71.00
pre	night shift	7	9.29	65.00
	Total	16		
PSS	Day shift	8	9.44	75.50
post	night shift	7	6.36	44.50
	Total	15		
PSQI	Day shift	7	7.64	53.50
post	night shift	6	6.25	37.50
	Total	13		
HPLP-II	Day shift	8	9.13	73.00
post	night shift	8	7.88	63.00
	Total	16		

		HPLP-II		PSQI	HPLP-II
PSS pre	PSQI pre	pre	PSS post	post	post
24.500	11.000	26.000	16.500	16.500	27.000
69.500	47.000	71.000	44.500	37.500	63,000
754	-1.980	583	-1.337	657	525
.451	.048	.560	.181	.511	.600
$.470^{9}$.054*	.606 ^b	.189 ^b	.534%	.6451
	24.500 69.500 754 .451	24.500 11.000 69.500 47.000 754 -1.980 .451 .048	24.500 11.000 26.000 69.500 47.000 71.000 754 -1.980 583 .451 .048 .560	24.500 11.000 26.000 16.500 69.500 47.000 71.000 44.500 754 -1.980 583 -1.337 .451 .048 .560 .181	24.500 11.000 26.000 16.500 16.500 69.500 47.000 71.000 44.500 37.500 754 -1.980 583 -1.337 657 .451 .048 .560 .181 .511

Grouping Variable: Shi Not corrected for ties.

Table 4

Ranks	- PSQI Compo	ment Scor	res Per Shift	
				Sum of
	Shift	N	Mean Rank	Ranks
CS1	Day shift	8	6.06	48.50
	night shift	7	10.21	71.50
	Total	15		
CS2	Day shift	8	8.50	68.00
	night shift	7	7.43	52.00
	Total	15		
CS3	Day shift	8	6.94	55.50
	night shift	7	9.21	64.50
	Total	15		
CS4	Day shift	8	8.25	66.00
	night shift	7	7.71	54.00
	Total	15		
CS5	Day shift	8	6.44	51.50
	night shift	7	9.79	68.50
	Total	15		
CS6	Day shift	8	6.81	54.50
	night shift	7	9.36	65.50
	Total	15		
CS7	Day shift	8	6.81	54.50
	night shift	7	9.36	65.50
	Total	15		

Test Statistics®

T TTT CONTRACTOR							
	CS1	CS2	CS3	CS4	CS5	CS6	CS7
Mann-Whitney U	12.500	24.000	19.500	26.000	15.500	18.500	18.500
Wilcoxon W	48.500	52.000	55.500	54.000	51.500	54.500	54.500
Z	-1.990	498	-1.179	253	-1.768	-1.247	-1.218
Asymp. Sig. (2-tailed)	.047	.618	.239	.800	.077	.212	.223
Exact Sig. [2*(1-tailed	. <mark>072</mark> *	.694 ^b	.3364	.867	.152 ^b	.281 ^b	.281 ^b
Sig.)]							

a. Grouping Variable: Shift b. Not corrected for ties.

Results

- mean steps in week 4

- p=.047
- disturbances component: p=.077
- middle of the night)

Summary

- physical activity
- Encouraging the nurse to walk more could lead to more exercise
- Following the competition, there was improvement in perceived stress, sleep quality, and health promoting lifestyle behaviors
- Mean scores of all validated tools improved after competition, but nurses were still moderately stressed, not sleeping well, and not demonstrating many health promoting lifestyle behaviors
- sleeping well
- Night shift nurse is vulnerable as evidenced by significant differences in sleep quality compared to the day shift nurse.
- This framework is a good tool for the vulnerable nurse

• As seen in table 1, A Wilcoxon signed rank test showed that there was a significant difference (Z = -2.130, p<0.05) between mean steps in week 1 and

• As seen in table 2, mean scores for each validated tool (pre and post competition)

As seen in table 3, Night shift nurses scored poorly on the pre-PSS, pre-PSQI, and post HPLP-II

 A Mann-Whitney U test indicated that there was a significant difference in pre competition PSQI global scores between the night shift and the day shift: U(N_{nightshift}=7,N_{dayshift}=8,)=12.500, z=-1.990, p=.054

• The night shift nurse scored poorly in the following components of the PSQI: Subjective sleep quality, sleep duration, sleep disturbances, use of sleeping medication, and daytime dysfunction

• As seen in table 4, Mann-Whitney U test indicated that there was a significant difference in the subjective sleep quality component: U(Nnightshift=7,Ndayshift=8,)=11.000, z=-1.980,

• Night shift RNs poorly rate their sleep over the last month compared to the day shift RN

 Clinically significant difference in the sleep U(Nnightshift=7,Ndayshift=8,)=15.500, z=-1.768,

 Night shift RN experienced more sleep disturbances (i.e. waking up to use the bathroom, waking up in the

Discussion

Physical activity

- week 4 to week 1
- exercising

Perceived stress, sleep quality, and health promoting lifestyle behaviors

- to week 1
- behaviors

Qualitative Interview

- Quotes from the interviews:

Implications for Practice

- walking rounds)
- profession

Gamification and Fitness tracking can motivate nurses to engage in

• Prior to the competition, the night nurse was more stressed and not

Significant increase in mean steps when comparing

Participants that walked more were more likely to be

 Consistent with a studies by Patel and colleagues (2017) and Cadmus-Bertran and colleagues (2019): participants that used a fitness tracker demonstrated an overall increase in activity.

Mean scores were improved when comparing week 4

Scores demonstrate overall moderate stress, poor sleep quality, and poor health promoting lifestyle

Consistent with ANA's findings in the HNHN initial survey between 2013 and 2016 (ANA & ICG, 2016) • Pre competition HPLP-II scores correlated with pre competition PSQI scores

• consistent with findings in literature that health promoting lifestyle behaviors are associated with sleep quality (Moudi et al., 2018; Muscogiuri et al., 2020)

themes: motivation and awareness

- "I joined a gym."
- "Personal habit: turning minimal activities [into] exercise."
- "A fitness tracker motivated me"
- "I was more mindful of my steps"
- "Being in a competition motivated me."
- "I joined a gym."
- "I was motivated when I saw my data compared week to week."

• Novel framework that can motivate the nurse to move more

• Enrichment of current psychosocial health promotion programs

• There must be a balance of stress and rewards for nurses within the workplace (Press Ganey, 2018)

Employers could provide bonuses for nurses who monitor their sleep, stress and lifestyle practices

Directly impact quality of care in clinical setting (i.e., more frequent

• A healthy nurse is less likely to burnout and subsequently leave the

• This framework is a good tool to target vulnerable nurses.