Introduction to:
IV THERAPY

(Second Edition, 2011)

By: Jennifer Morales Sotto BSN RN CLC
Table of Contents

Chapter 1 Anatomy and Physiology of the Vascular System.....pp 3-6
Chapter 2 Maintaining Fluid and Electrolyte Balances.....pp 7-13
Chapter 3 Administering IV Medications.......pp 14-16
Chapter 4 Transfusion of Blood Products.....pp 17-20
Chapter 5 Peripheral IV Insertion.....pp 21-26
Chapter 6 Central Venous Catheters.....p 27s
Chapter 1: Anatomy and Physiology of the Vascular System

The vascular system, also called the circulatory system, is made up of the vessels that carry blood and lymph through the body. The arteries and veins carry blood throughout the body, delivering oxygen and nutrients to the body tissues and taking away tissue waste matter. The lymph vessels carry lymphatic fluid (a clear, colorless fluid containing water and blood cells). The lymphatic system helps to protect and maintain the fluid environment of the body by filtering and draining lymph away from each region of the body. In using IV therapy, you will mainly be utilizing veins and occasionally the arteries. As a result, accessing veins will be discussed during the remainder of this course.

Veins are vessels that deliver unoxgenated blood to the heart. Because of the lack of O2, their color appears to be blue. Blood in veins appear to be a darker red in color, compared to the bright red colored blood found in arteries (which carry oxygenated blood from the heart to the rest of the body). Veins are located superficially in the skin’s surface, thus making is easy for parenteral access. Its walls consist of 3 layers:

1. Tunica intima
 - Inner most layer
 - Composed of smooth flat endothelial cells which allows platelets to flow freely
 - In larger veins, the endothelial layer contains valves (especially where veins branch off) that ensures blood flow to the heart.

2. Tunica media
 - Middle layer
 - Composed of muscular, elastic tissue, and nerve fibers
 - This allows the vessels the ability to vasodilate and constrict as a result of impulses
 - In other words, veins can collapse or distend

3. Tunica Adventitia
 - Composed of areolar connective tissue
 - This surrounds and supports tissue.

Before we can move on to locating veins for IV use, it is important to understand the main difference between veins and arteries. In knowing the difference, the nurse will have an easier time accessing veins instead of arteries. *Table 1.1*

<table>
<thead>
<tr>
<th>VEINS</th>
<th>ARTERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carry unoxgenated blood to the heart (Dark Red)</td>
<td>Carry oxygenated away from the heart to the rest of the body (Bright Red)</td>
</tr>
<tr>
<td>Have valves</td>
<td>Do not have valves</td>
</tr>
<tr>
<td>Can collapse</td>
<td>Do not collapse</td>
</tr>
<tr>
<td>Located in the surface</td>
<td>Located deep in the tissue, protected by muscle</td>
</tr>
<tr>
<td>Do not pulsate</td>
<td>Pulsate</td>
</tr>
</tbody>
</table>

Based on the differences described above, if you think you have hit an artery instead of a vein, remove the needle and put pressure on sight for at least 5 minutes to stop the bleeding.

Location of Veins Used for Venapuncture and IV Therapy

Although veins are generally located in the same places in people, certain variations and situations can make it more difficult to find them such as, edema, excess fat, IV drug users, burns, scar tissue etc. Veins located in the lower extremities more commonly unite with deep veins, making deep veins more vulnerable to thrombosis. Thus, superficial veins in the upper extremities are preferred for IV therapy.
1 Dorsal Digital Veins- flow laterally on the fingers and are joined by communicating branches. They are used as a last resort because of their curvature and size.

2-3 Dorsal metacarpal Veins- formed by a union of the digital veins on the dorsum of the hand and between the knuckles. This makes them more suitable for IV therapy. Their use early in IV therapy saves the larger veins in the upper arm.

4 Cephalic Vein- continues to the (see picture 1.2) forearm flows along the radial border of the thumb side. Its position and size makes it a great pick to infuse irritating medications and blood

5 Basilic Vein- Located along the ulnar border or pinky side of the forearm. Because of its position outside the antecubital fossa it has an increased risk of forming hematomas

Located just below the elbow bend, Connects the cephalic and basilica vein
Chapter 1 Review

On your own please answer the following questions

1. Veins located in the lower extremities more commonly unite with deep veins, making deep veins more vulnerable to thrombosis. Thus, superficial veins in the upper extremities are preferred for IV therapy.

 a. True
 b. False

2. Which of the following is true of veins and arteries?

 a. Veins and arteries both carry oxygenated blood away from the heart.
 b. Veins and arteries pulsate
 c. Veins have valves, arteries do not
 d. Veins are located deep in the tissue

For questions 3 and 4 please refer to the diagrams below:

3. Give the right name for the following numbered veins:
 2. _____________________
 6. _____________________
 7. _____________________
 8. _____________________

4. Which of the veins labeled in #3 is the best sight for IV sight selection? ________________

Superficial veins of the right upper limb.
5. Which of the following is an indication for initiating intravenous therapy?
 a. Maintain fluid and electrolyte balance
 b. To administer medications
 c. Transfuse blood and blood products
 d. All of the above

Answers: 1true, 2 c, 3 Dorsal metacarpal, cephalic, basilica, median antecubital 4 dorsal metacarpal, 5d
Chapter 2: Maintaining Fluid and Electrolyte Balances

The adult body is approximately 50-60% water. Its fluid consists of water and dissolved particles which provide an environment where vital chemical and physical reactions take place and substances can be carried to and from cells. The charged particles dissolved in the fluid are also called electrolytes (electrolytes will be discussed later in this chapter). This is called the Fluid and Electrolyte balance system. This system maintains homeostasis of the body, therefore affects all bodily processes.

Body water is distributed in the following 3 compartments:

1. **Extracellular (ECF)**
 - Water outside the cell
 - Allows for free passage of electrolytes and water between compartments
 - Main electrolyte is Na+, sodium

2. **Intravascular (IVF)**
 - Fluid in the vascular space
 - Main electrolyte is K+, potassium

3. **Intracellular (ICF)**
 - Fluid inside the cells, Fluid in RBCs which is considered part if IVF is also thought as ICF

Each compartment can be interchangeable. A change in one will reflect a change in the other. Although the ECF allows for free passage of water and electrolytes between compartments, it is the semipermeable membrane of the cell wall that limits free passage.

Electrolytes

Cations are the positive electrolytes. Anions are the negative electrolytes.

They have 3 major functions:
1. Play a big role in water distribution by controlling osmotic pressure.
2. They are necessary for the transmission of impulses
3. They are big part of the acid base balance

<table>
<thead>
<tr>
<th>Cations</th>
<th>(meq/L) (blood serum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na+</td>
<td>135-145</td>
</tr>
<tr>
<td>K+</td>
<td>3.5-5</td>
</tr>
<tr>
<td>Ca++</td>
<td>9-11</td>
</tr>
<tr>
<td>Mg++</td>
<td>1.8-2.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anions</th>
<th>(meq/L) (blood serum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl-</td>
<td>105-110</td>
</tr>
<tr>
<td>HCO3-</td>
<td>25</td>
</tr>
<tr>
<td>SO4 and PO4</td>
<td>9</td>
</tr>
<tr>
<td>proteins</td>
<td>16</td>
</tr>
</tbody>
</table>

Osmosis and IV solutions

Fluid and electrolytes are in continuous motion in the body, consistent with the constant exchange between the internal and external environment. Water moves across a semipermeable membrane via osmosis, from an area of lesser solute concentration to an area with greater solute concentration. The unit of measurement used to define the
number of milliosmoles (particles) per liter of solution is called *osmolarity*. Please see picture 2.1 to help better your understanding.

2.1 Osmosis with semipermeable membrane.

Osmotic characteristics of IV solutions depend on the osmolarity they have compared to the osmolarity to the cell fluid. This determines how they affect the RBCs in blood. The following are 3 main types of IV solution:

1. **Isotonic** – They have the same osmolarity as normal body fluid, therefore there would be no effect on the cell. Types of isotonic solutions: 0.9 NS, D5W, Lactate Ringers
2. **Hypotonic** - They have a lower osmolarity than normal body fluid, therefore, water will be pulled into the cell, causing them to swell. Types of hypotonic solutions: 0.45 NS, D2.5 W, 0.33 NS
3. **Hypertonic** – They have a greater osmolarity than normal body fluid, therefore water will be pulled out of the cell, causing them to shrink. Types of hypertonic solutions: D5NS, D5 1/3 NS, D10W

2.2 Effects of each solution on the cell
Fluid and Electrolyte Therapy

The goal of this therapy is to correct the fluid and electrolyte imbalances caused by underlying pathologies, and/or to maintain the balance in the event of an illness. The body has 4 main regulating mechanisms used to maintain the consistence of body fluid volume, electrolyte composition and osmolarity. The mechanisms are:

1. **Kidneys**
 - In conjunction with the cardiac system, kidneys maintain fluid balance by determining the amount and composition of urine that is made and released.
 - Their distal tubules are important in regulating normal osmolarity and fluid volume. Renal Disease, cardiac failure, shock and postoperative stress can impair this system.
 - Adrenal glands, located on top of the kidneys, secrete aldosterone, a hormone that increases the resorption of sodium from the tubules, thus maintaining normal sodium concentrations.

2. **Lungs**
 - Major source of insensible fluid loss through respiration

3. **Skin**
 - Major source of insensible fluid loss through perspiration

4. **Pituitary Gland**
 - Releases (ADH) antidiuretic hormone which prevents diuresis by increasing the reabsorption of water.

In order to treat fluid and electrolyte disorders you will need to do the following

1. Estimate the amount of fluid and/or electrolyte lost. Based on what you calculate, you will determine what type of fluid replacement is needed.
2. Monitor the intake and output

Based on what you have learned so far in this chapter, the following charts will show you how to treat dehydration, overhydration, and common electrolyte imbalances.

Dehydration - Occurs generally when fluid intake is less than fluid output

Overhydration - Occurs when there is an excess of total body water

Table 2.2 Fluid Imbalances and Electrolyte Imbalance

<table>
<thead>
<tr>
<th>Fluid Imbalance</th>
<th>Physical Mechanism</th>
<th>Cause</th>
<th>Symptoms</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotonic Dehydration</td>
<td>Na and Water lost in equal amounts</td>
<td>Vomitting, Diarrhea</td>
<td>Poor turgor, drop in BP, increase in PR, weak pulse, decreased output, weight loss, weakness and lethargy</td>
<td>0.9 NS</td>
</tr>
<tr>
<td>Hypertonic dehydration</td>
<td>Increase in NA with Loss of water, Increase H&H and/or osmolarity</td>
<td>Excess insensible water loss, Insufficient fluid intake</td>
<td>Thirst, Confusion, Stupor, Poor skin turgor</td>
<td>D5W first to hydrate, than 1/3-1/2 NS</td>
</tr>
<tr>
<td>Dehydration/Overhydration</td>
<td>Description</td>
<td>Signs</td>
<td>Treatment</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Hypotonic Dehydration</td>
<td>Na loss > than water Decrease in serum sodium Decreased osmolarity in ECF</td>
<td>Diuretics Burns Vomiting Sweat</td>
<td>Poor skin turgor N and V HA Abdominal Changes Diarrhea weakness</td>
<td>0.9 NS D5NS</td>
</tr>
<tr>
<td>Isotonic Overhydration</td>
<td>No effect on osmolarity. Na remains the same,. Dilutes plasma</td>
<td>Large amount of fluid intake</td>
<td>Increase intake more than output Weight gain Bounding pulses Circulatory Overload Edema</td>
<td>Decrease fluid intake</td>
</tr>
<tr>
<td>Hypertonic Overhydration</td>
<td>Increase of fluid in the ECF</td>
<td>Hypertonic fluid infused too quickly</td>
<td>Signs of pulmonary edema</td>
<td>Diuretics (Lasics)</td>
</tr>
<tr>
<td>Hypotonic</td>
<td>Water intoxication or dilutional hyponatremia</td>
<td>Intake of large amounts of electrolyte fee fluids Fluids lost by NGT suction Vomiting and Diarrhea Diuresis</td>
<td>CNS disturbances, signs of ICP</td>
<td>Decrease fluid intake Slow infusion of hypertonic solution</td>
</tr>
</tbody>
</table>

| Hyponatremia | NA<135 | GI secretion loss Biliary and fistula secretions Fluid shifts so Na is not accessible (edema, ascites, burns) | HA Muscle weakness, Anxiety Apathy Anorexia Seizures Mental Confusion | NS or D51/2 NS Slowly |

| Hypernatremia | NA>145 | Increase renal intake with poor renal function Decreased fluid intake Diarrhea Sweating Dehydration | Thirst Dry mucus membranes Decreased urine output Flushed skin | D5W |

| Hypokalemia | K< 3.5 mEq/L | GI losses Urine loss from Diuretic Therapy K-free diet PH changes Kidney Disease Increase Na intake | Muscular Cramps Flaccid paralysis Mental Confusion Postural hypotension Weak irregular pulse EKG- Flattened T wave with increased QT and U wave | PO or IV Potassium NEVER GIVE K+ IV PUSH Can cause Cardiac arrest (Give at least over 20 minutes) NEVER exceed 20mEq/L of K+ in 1 hour in unmonitored patient NEVER exceed 40 mEq/L per liter of IV Solution |

| Hyperkalemia | K> 5.5 | Acidosis Decreased Urine excretion Tissue Injury Salt substitute Blood transfusions | Parasthesia of face, tongue, hands and cheek Cardiac arrhythmias Bradycardia EKG- tall T Waves, short QT interval, widening QRS | Potassium sparing food Kayexalate Calcium Gluconate NaHCO3 Insulin Dialysis Diuresis |

| Hypocalcemia | Decreased Ca intake Loss by Kidneys | Muscle tremors, Spasms with numbness | Ca gluconate or Ca chloride |
| Ca < 8.5 | Vitamin D deficiency
Diarhea
Hypothyroidism
Receiving large amounts of stored blood products | and tingling around mouth nose and fingers
Decreased muscle contractility
Eotional disturbances
Lengthened QT interval.
Depression
Coma
Trousseau and Chvostek signs + | Increase intake of milk products |
|---|---|---|---|
| **Hypercalcemia**
Ca > 10.5 | Increased intake of vitamin D and A,
Hyperthyroidism
Sarcoidosis
Bone metastasis | Anorexia
Nausea
Fatigue
Constipation
Polyuria
Dehydration
EKG- shortened QT interval, depress T wave
Bradycardia
Heart block | Restrict Ca intake tp 4000 mL/ day to prevent calculi
Give IV fluids by loop diuretic to help excretion of Ca
Calcitonin to promote renal excretion of Ca
Determine pathology r/o tumor
Guard against pathological Fx |
| **Hypochloremia**
Cl < 95 | Value relates to K+ and Na+
Vomiting and Diarrhea
Diuretic | Mimics Na | Treat Cause |
| **Hyperchloremia**
Cl > 106 | Bicarbonate deficiency
Dehydration
Nephritis
Eclampsia
Anemia
Cardiac disease | Rarely presents symptoms | Treat cause |
| **Hypomagnesemia**
Mg < 1.8 mEq/L | Often found in patients with IBD, bowel resection
Seen with patients with hypocalcemia, hypokalemia
Chroic alcoholism
Severe Diarrhea | Same as hypocalcemia
Leg and foot cramping
Tremors
Cardiac arrhythmias
Difficulty swallowing
Paralytic Ileus | Give IV MgSO₄ at a slow rate. **DO NOT IV PUSH** |
| **Hypermagnesemia**
Mg > 2.4 | Renal failure
Ingestions of antacids containing magnesium
DKA
Leukemia | Muscle weakness
Diaphoresis
Bradynea
Flushung decreased deep tendon reflexes
Decreased (LOC) | IV Ca gluconate |

Chapter 2 Review
Please answer the following Questions

1. Osmolarity is:
 a. Energy expended by the cell’s active transport system.
 b. Number of particles in the solution
 c. Filtration capacity of the cell
 d. Pressure exerted by the heart
2. A semi permeable membrane allows particles of any size to pass through it
 a. True
 b. False

3. Insensible fluid loss occurs in which of the following:
 a. Diarrhea and vomiting
 b. Frequent blood sampling
 c. Skin and Lungs
 d. Urine and feces

For questions 4-6, match the types of IV fluid to the correct effect that it will have on the cell

a. Draws fluid from cell 4. _____ Hypotonic
b. Has no effort on the cell volume 5. _____ Hypertonic
c. Pulls fluid into the cells 6. _____ Isotonic

7. Which of the following solutions given intravenously is least likely to cause tissue injury?
 a. Saline 0.9%
 b. Lactated ringers
 c. Dopamine
 d. Lidocaine

8. You receive, Mrs. Smith, a 76-year-old female patient S/P abdominal exploratory laparascopy from the
 recovery. She is receiving lactate ringers continuously IV at 150mL/hr. Upon your initial assessment,
 you find that she has shortness of breath, bilateral rales, distended neck veins and blood pressure of
 180/96. Based on her symptoms which complication is Mrs. Smith experiencing?
 a. Hyperkalemia
 b. Phlebitis
 c. Fluid Overload
 d. Medication adverse reaction

9. Which intervention would you choose to manage Mrs. Smith?
 a. Remove IV sight, apply warm moist compress, monitor sight 48 hours post removal for post
 infusion phlebitis
 b. Slow infusion of hypertonic solution
 c. Administer Bolus of 0.9 NS 20ml/kg over 30min
 d. Slow infusion to KVO, notify MD, Elevate HOB, give O2, medications (diuretics, vasodilators,
 inotropics, morphine), monitor vitals, Weigh patient,
10. Electrolytes are
 a. charged particles in solution
 b. present only in the extra cellular fluid
 c. most frequently cations
 d. need not be present in specific concentrations and normal body function

11. Mr. Oliver has been admitted to your unit with severe vomiting and 8-10 liquid bowel movements per day. An IV has been initiated - D5W one liter + 20 mEq KCL + multivitamins to infuse over six hours. His blood work reveals: Cr-1.0, Na-160, K-4.3, BUN-20, and CL-108. Identify his electrolyte imbalance:
 a. Hypernatremia
 b. Hyponatremia
 c. Hypokalemia
 d. Hyperchloremia

Answers: 1b, 2 False, 3 c, 4 c, 5a, 6b, 7a, 8c, 9d, 10a, 11a
Chapter 3: Administering IV Medications

Intravenous (IV) medication administration is the process of giving medication directly into a patient's vein. Methods of administering IV medication may include giving the medication by rapid injection (IV push) into the vein using a syringe, giving the medication intermittently over a specific amount of time using an IV secondary line, or giving the medication continuously mixed in the main IV solution. IV medications are usually given through a peripheral line or saline IV lock, but may also be administered direct IV, through a central venous catheter (which will be discussed later in this module).

The primary purpose of giving IV medications is to initiate a rapid response to medication. The drug is immediately available to the body. The IV route for medication administration may be used if the medication to be delivered cannot be taken by mouth and/or are absorbed poorly through tissue (IM, SC).

3.1 Ways on how to give IV Medications

A. IV Push. Should be followed by NS Flush

B. IV piggy back (IPB) with secondary line

Nursing Considerations when Administering IV Medications

Since patient’s system response to IV medication is immediate, it is imperative that the following is done before any IV medication is given:

1. Check patient allergy history. The immediate response can lead to an immediate reaction, from slight body rash to anaphylaxis.
3.2 Drug Reactions

Hives Rashes

A severe type of allergic reaction that involves two or more body systems (e.g., hives and difficulty breathing).

2. 5Rights

- Patient
- Medication
- Dose
- Route
- Time

3. Compatibility of medications and/or other medications and IV solution

- Physical: When 2 or more medications are mixed together, a physical substance, or precipitate, is formed.

Precipitate
Therapeutic effects happen when 2 drugs are given too close to together it may change the affect of 1 or both drugs. There are several ways the medications will be affected. Here are 2 types:

a. **Synergistic**- occurs when drugs can interact in ways that enhance or magnify one or more effects, or side effects, of those drugs. Example: When treating MRSA, gentamycin is given in conjunction with vancomycin because it enhances vancomycin’s antimicrobial action.

b. Opposition (Antagonism) - Two drugs with opposing actions can interact, thereby reducing the effectiveness of one or both. Example: Certain beta-blockers (such as propranolol, indural), taken to control high blood pressure and heart disease, counteract beta-adrenergic stimulants, such as albuterol taken to manage asthma. Both types of drugs target the same cell receptors—beta-2 receptors but one type blocks them, and the other stimulates them.

• **Chemical** happens when one drug may change the chemical compound of the other. Example: When amphotericin B is to be given IV, it must be administered with a secondary line primed with D5W ONLY

Chapter 3 Review

Please answer each question

1. Overlapping effect of two drugs given too close together, such as an increase in antiplatelet effect of Heparin when given with Penicillin, is an example of which type of incompatibility?
 a. Therapeutic
 b. Physical
 c. Chemical
 d. None of the above

2. Which of the following is the **BEST** intervention that can prevent allergic reactions before administering IV medication?
 a. Check the 5 rights
 b. Ask the patient the allergy Hx
 c. Flush IV sight with NS 0.9
 d. Nothing, just give the medication

Answers: 1a, 2b
Chapter 4: Transfusion of Blood Products

Why is Transfusion Therapy needed?

- To maintain and restore blood volume
- To increase oxygen carrying capacity of blood
- To supply coagulation factors
- To supply protein
- To supply white blood cells
- To supply passive immune protection and treat hypogammaglobulinemia

<table>
<thead>
<tr>
<th>Type</th>
<th>Components</th>
<th>Indication</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Blood</td>
<td>RBCs, Plasma, Plasma proteins</td>
<td>Massive bleeding, Expanding volume</td>
<td>Up to 500mL Within 4 hours</td>
</tr>
<tr>
<td>Packed RBC’s</td>
<td>RBCs and small amount of plasma</td>
<td>Increase organ oxygenation with minimal volume expansion</td>
<td>250-300mL Within 4 hours</td>
</tr>
<tr>
<td>Platelets</td>
<td>Platelets in small amount of plasma</td>
<td>Thrombocytopenia, Platelet dysfunction</td>
<td>50-400mL 20-60 minutes</td>
</tr>
<tr>
<td>FFP</td>
<td>Clotting factors, plasma proteins and water</td>
<td>Blood loss, clotting disorders, DIC over-anticoagulation, clotting factor deficiencies</td>
<td>200-250mL 15-30 minutes 20 min to thaw Use within 6 hours</td>
</tr>
<tr>
<td>Cryoprecipitate</td>
<td>Clotting factors, fibrinogen in plasma</td>
<td>Hemophilia, Von Willebrand’s disease</td>
<td>10-20 mL 3-15 minutes</td>
</tr>
<tr>
<td>Colloid Solutions</td>
<td>Albumin 5% or 25%, immunoglobulins</td>
<td>Volume expanders, Congenital or acquired autoimmune deficiency syndromes</td>
<td>Depends on order</td>
</tr>
<tr>
<td>Granulocytes</td>
<td>Granulocytes and lymphocytes</td>
<td>Serious microbial infections in a patient with severe neutropenia</td>
<td>200-400mL 1-2 hours</td>
</tr>
</tbody>
</table>

> Because of the potentially life threatening consequences of blood type incompatibilities it is imperative to do a type and screen of the patient’s blood in the event that a blood product is ordered. According to Cinahl Information Systems (2009), in the United states 1 in 600,000 blood transfusions results in the death of a patient as a result of a transfusion reaction. Majority of these reactions were caused by incorrect identification of the patient, cross checking of the blood product, and mislabeling of the blood at the blood bank.
Blood Type Compatibility Chart

<table>
<thead>
<tr>
<th>Blood Type</th>
<th>Donate Blood To</th>
<th>Receive Blood From</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>A+ AB+</td>
<td>A+ A- O+ O-</td>
</tr>
<tr>
<td>O+</td>
<td>O+ A+ B+ AB+</td>
<td>O+ O-</td>
</tr>
<tr>
<td>B+</td>
<td>B+ AB+</td>
<td>B+ B- O+ O-</td>
</tr>
<tr>
<td>AB+</td>
<td>AB+</td>
<td>Everyone</td>
</tr>
<tr>
<td>A-</td>
<td>A+ A- AB+ AB-</td>
<td>A- O-</td>
</tr>
<tr>
<td>O-</td>
<td>Everyone</td>
<td>O-</td>
</tr>
<tr>
<td>B-</td>
<td>B+ B- AB+ AB-</td>
<td>B- O-</td>
</tr>
<tr>
<td>AB-</td>
<td>AB+ AB-</td>
<td>AB- A- B- O-</td>
</tr>
</tbody>
</table>

Responsibility of the RN

- Check that there is an order to transfuse
 - Type of blood component
 - Number of units to be infused
 - When patient is to be infused
 - If multiple blood products are to be infused, ask MD to prioritize
- Verify Patient Identity
- Confirm that the consent is signed
- Be sure IV is patent or start if needed
 - Blood must be administered via a separate IV line
 - Angiocath should be a 20g or larger (#18 preferred)
 - 0.9% NaCl only
- Send someone with appropriate paper work to pick up blood from lab** NEVER keep blood product on the unit for more than 30 minutes prior to starting transfusion.**
 - Return unit to the blood bank if not used in 30 minutes
 - Specially designated refrigerators may be used in specialty areas (e.g. OR)
- Obtain and record baseline vital signs prior to starting transfusions
 - If patient has a fever notify MD first (may mask reaction)
- Assess patients understanding of the procedure
 - Instruct patient to notify nurse of:
 - Chills and fever
 - Back pain
 - Flushing
 - Palpitations
 - Difficulty breathing
- Proper and complete patient identification is extremely important during the entire process of transfusion therapy, from the initial acquisition of a blood sample for compatibility testing, to the actual transfusion of blood.
 - Verify patient’s medical record number on the chart and unit of blood
 - Verify that the donor blood type and Rh factor is compatible with the patient’s blood.
- Confirm the blood bank’s identification number is the same to that on the transfusion bag
- Document in the chart the date and time that you and another licensed staff member that verified that this is the correct blood for the correct patient. You and the staff member should both sign this entry. **NO SHORT CUTS!**
 - Inspect blood for, expiration date, any discolorations, and/or frothiness Monitor
 - Vital signs and document as per hospital policy usually:
 - Within one hour before starting the transfusion
 - 15 minutes after starting the transfusion
 - Every 30-60 minutes
 - Whenever patients condition requires
 - Observe patient frequently for any adverse reactions
 - Observe site frequently for signs of infiltration
 - Administer at prescribed rate
 - (No longer than 4 hours)

Adverse Reactions

<table>
<thead>
<tr>
<th>Type</th>
<th>Cause</th>
<th>Symptoms</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrile</td>
<td>sensitivity to donor white cells, platelets, or plasma proteins (antigen-antibody reaction)</td>
<td>Chills and fever, headache, flushing, anxiety, muscle pain, chest tightness, palpitations, N and V</td>
<td>Give antipyretics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Notify MD do not restart</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>keep line open with NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Onset-Immediate- 6 hrs post</td>
<td></td>
</tr>
<tr>
<td>Anaphylactic</td>
<td>Infusion of plasma containing IgA proteins to an IgA deficient recipient who developed IgA antibodies from pregnancy or previous transfusion</td>
<td>Respiratory symptoms- bronchospasm, wheezing, dyspnea, tachypnea, cyanosis Cardiovascular- tachycardia, hypotension, shock, cardiac arrest GI- N and V, cramping diarrhea</td>
<td>CPR and Administer Epinephrine do not restart</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Onset- Immediate</td>
<td></td>
</tr>
<tr>
<td>Acute Hemolytic</td>
<td>Infusion of incompatible blood that stimulates an antigen-antibody response causing the destruction of RBCs</td>
<td>Chill, fever, lower back pain, flushing, tachycardia, tachypnea, hypotension, cardiovascular collapse, hemoglobinuria, bleeding, NV, SOB, chest pain, shock, cardiac arrest, death</td>
<td>Treat shock is present, measure hourly out put, administer diuretics as needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Onset- Usually in the first 15 minutes but can occur at any time</td>
<td></td>
</tr>
<tr>
<td>Bacterial Contamination</td>
<td>Infusion of contaminated blood components</td>
<td>Rapid onset of chills and fever vomiting and diarrhea</td>
<td>Draw blood cultures send bag back to blood bank</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Give IV antibiotics, vasopressors steroids</td>
</tr>
</tbody>
</table>

What to do in the event of a Transfusion Reactions

1. **STOP THE TRANSFUSION**
2. Using a different IV line, keep the vein open with NS 0.9
3. Notify the physicians
4. Report to the blood bank
5. Check identification, bag and bag label
6. Draw blood for a red top and lavender top tube (which will be tested for coombs) and have it sent to the blood bank with “Post transfusion” indicated on the label
7. Send a urine sample to the blood bank with “Post Transfusion” Indicated on the label
8. Complete the transfusion reaction section of the form
9. Complete an incident report
10. Return the remaining blood to the blood bank with the tubing
11. Monitor vital signs
12. Follow orders as written
13. document the following in progress notes
 - Date and time reaction occurred
 - Clinical presentation of the reaction
 - Time the transfusion was stopped
 - Amount of blood that was given
 - The time when physician was notified
 - The time blood bank was notified
 - Blood, urine, blood bag, tubing sent to the blood bank
 - Any other interventions that were done and response of patients

Chapter 4 Review Please answer each question.

1. Ms. Flores, a 23-year-old female, was admitted to the hospital following a MVA. On physical assessment she was found to have a fracture of the R radius, a distended tender abdomen and facial contusions. Vital sign and significant lab values were T-97.5, P-115, R-25, B/P-80/50, WBC-5.0, RBC-3.0, Hct-24, Hgb-8, and U/A-gross hematuria. Two units of the packed cells were ordered. An IV was started on the left forearm. In view of the order for two units of the packed cells, the nurse should start the IV with which solution:
 a. D5W
 b. NSS,9%
 c. Plasmalyte
 d. Lactated Ringers

2. The nurse hangs the first unit packed of cells on Ms. Flores. 10 minutes after the blood is started she shivers and states she has severe lower back pain. Her vital signs are: T-102, P-98, R-35, and BP-75/50. The first action taken by the nurse should be to:
 a. Decrease the blood flow rate and re-check vital signs
 b. Start a second IV of D5 .45% Saline
 c. Increase the blood flow rate and re-check vital signs
 d. Discontinue the blood immediately and restart an IV of 0.9% Saline

3. The sign and symptoms Ms. Flores is having are indicative of:
a. Febrile reaction
b. Urticarial reaction
c. Acute hemolytic reaction
d. Viral transmission

4. The documentation of Ms. Nielsen’s reaction should include:
 a. Time reaction occurred, signs and symptoms, blood stopped, lab and physician notified
 b. Signs and symptoms indicating type of blood reaction
 c. Identification of the blood reaction
 d. Identification of the blood reaction and preventative measures that could have been used

5. Four hours after Mr. Smith’s blood was started there is still 75ml left in the bag? The nurse should:
 a. Allow the blood to continue at its present rate
 b. Assess the site and document the site appearance and rate of flow
 c. Speed up the rate of flow
 d. Stop the blood

Answers: 1.b, 2d, 3c, 4a, 5d,

Chapter 5: Peripheral IV Insertion

The peripheral IV cannula enables the delivery of fluid therapy, medications, blood products and parenteral nutrition directly to the vein. The procedure is done by inserting a small flexible plastic cannula through skin, into the vein. This must be done using aseptic technique to prevent infection around and in the sight.

The primary goal of site selection is to choose one that will be least vulnerable to infiltration as well as allow the patient the most freedom to continue with A.D.L.’s. The RN must choose the right cannula size based on type and duration of treatment in order to help prevent phlebitis, 20 gauge and above (smaller gauges are used in pediatric and elderly patients). Start low and move your way up. There is a lower risk of the development of phlebitis in hand veins than in veins of the wrist or upper arm. Find a vein that is visible and palpable. Avoid areas of movement, joint flexion, affected by mastectomy, CVA, or A-V fistula. It is recommended that there be a limit of 2 attempts per nurse on a patient in order to prevent trauma. ALWAYS verify physician’s order and explain procedure to the patient. DO NOT attempt insertion or phlebotomy on patient if patient is refusing or else it would be considered battery.

Assemble Supplies

- Alcohol or chloraprep swab (for skin prep)
- IV extension set
- Saline flush
- Tape and/or occlusive dressing
5.1 IV Supplies

How to Insert Cannula

- Apply anesthetic agent to sight (optional). Allow medication to set on skin for 30-60 minutes, then wipe off excess medicine before attempting insertion.
- Wash hands.
- Apply clean gloves.
- Clean sight with alcohol swab and allow to dry. Do not touch after cleaning.
- Apply tourniquet 4-6 inches above sight.
- With the mouth of the needle facing up insert the needle with cannula at a 19-30 degree angle. Advance cannula into the vein as needed while holding needle still.
- Stabilize the hub of the cannula gently as you withdraw needle completely and remove the tourniquet.
- Attached primed extension set into angiocath.
- Secure with occlusive dressing and tape.
- Draw slightly to check for blood return. Flush with the remainder of saline flush to ensure patency.
- Label and date sight. IV sight should be changed every 72-96 hours in order to avoid, infiltration, phlebitis, and infection.
5.2 IV Insertion

Complications

<table>
<thead>
<tr>
<th>Type</th>
<th>What is it?</th>
<th>Symptoms</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematoma</td>
<td>Accumulation of blood in the tissues at and around sight</td>
<td>Immediate swelling, bruised area, blood leaking at sight, pain, unable to advance cannula</td>
<td>Remove needle and apply pressure, elevate extremity, recheck for bleeding, document in nursing notes assessments, and interventions</td>
</tr>
<tr>
<td>Infiltration</td>
<td>Leaking of IV fluid into the tissue caused by dislodgement or oversized catheter</td>
<td>Swelling at sight, may or may not be painful, IV fluid leakage at sight, no blood return at sight, flow obstruction, delayed capillary refill Infiltration Scale (INS 2006) Grade 0 - No symptom Grade 1 - Blanching, cool to touch, pain or no pain, swelling at sight is less than 1 inch in any direction Grade 2 - same as grade 1 except swelling is 1-6 inches any direction from sight Grade 3 - Blanching, cool to touch, mild</td>
<td>Early detection imperative, stop infusion and d/c IV site, assess circulation and pulses, apply warm compress for comfort Document all assessments, interventions File incident report</td>
</tr>
<tr>
<td>Condition</td>
<td>Description</td>
<td>Early Detection</td>
<td>Treatment/Interventions</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Extravasation</td>
<td>Tissue injury caused by leakage of toxic medication into the surrounding tissue causing necrosis and even sloughing of the vein.</td>
<td>Skin is blanched or reddened, cool or warm, tender at insertion sight, minor to severe swelling, burning or pain at sight, sluggish capillary refill, weak pulses, tissue sloughing</td>
<td>Early detection is important, use interventions for infiltration as needed, notify MD, depending on the medication that has infiltrated follow MD’s orders for treatment and whether to or not remove angiocath. Common treatment for extravasation is Hyaluronidase (Hylenex) SC injection. Check circulation and pulses. Document all assessments, interventions. File incident report.</td>
</tr>
<tr>
<td>Phlebitis</td>
<td>Inflammation of the vein that can be caused by mechanical, or chemical irritation or infection</td>
<td>Sluggish flow rate, reddened warm are at sight and along the path of the vein, pain and tenderness at sight and path of the vein, might have edema, if prolonged venous cord can be palpable, elevated temp, purulent drainage at sight Phlebitis</td>
<td>Remove IV sight, apply cool moist compress, monitor sight 48 hours post removal for post infusion phlebitis. Document all assessments, interventions. File incident report.</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>Formation of a clot in the vein obstructing circulation without inflammation due to damaged intima, deposit of fibrin clot formation, and occlusion of vessel.</td>
<td>Little or no pain present, slow to occluding flow. Can go undetected until secondary complications occur: swelling, tenderness and redness</td>
<td>DO NOT FLUSH! The thrombus may dislodge and become embolus. Remove IV, notify MD of any secondary complications, warm compress. Watch for signs of infection (they provide a good medium of bacterial growth). Document all assessments, interventions.</td>
</tr>
<tr>
<td>Thrombophlebitis</td>
<td>Phlebitis and thrombosis occur together</td>
<td>Severe pain, discomfort, redness, warmth and swelling at sight and along the path of the vein, Fever, malaise leukocytosis, slowing of IV rate</td>
<td>Treatment is similar to thrombosis, elevate extremity</td>
</tr>
<tr>
<td>Venous Spasm</td>
<td>Vasoconstriction of vein due to irritation (cold fluid) or trauma</td>
<td>Severe pain along vein, redness blanching, sharp painful sensation with numbness at the sight radiating to the extremity</td>
<td>Five fluid and medications at room temperature, dilute irritating medications, infuse at ordered rate, apply warm compress, if the spasm happens, remove IV. Monitor Document all assessments, interventions Document all assessments, interventions</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Punctured Artery</td>
<td>Artery punctured by needle</td>
<td>Bleeding with bright red blood, difficult to stop bleeding</td>
<td>Apply immediate firm pressure for at least 5 minutes, until bleeding stops, apply sterile dressing after the bleeding has stopped, then reassess for bleeding later, Document all assessments, interventions</td>
</tr>
<tr>
<td>Puncture of nerve, tendon, and ligament</td>
<td>Nerve, tendon, or ligament is penetrated</td>
<td>Loss of feeling around sight, unable to move extremity, pain, cyanosis, deformity if limb, paralysis of limb</td>
<td>Remove needle, assess for return of feeling, notify MD if feeling has not returned, Document all assessments, interventions</td>
</tr>
<tr>
<td>Septicemia</td>
<td>Caused by introduction of microorganisms at time of insertion, or infusion of contaminated solutions,</td>
<td>Fevers, chills, vital sign changes, changes in level of consciousness, NV and HA, purulent drainage at sight, may have phlebitis, or thrombophlebitis</td>
<td>Observe hourly (transfer to critical care), report signs and symptoms to MD, d/c IV and restart in another area, culture drainage from IV. Follow hospital policy when culturing the tip, Administer antibiotics and other treatment as ordered, Document all assessments, interventions</td>
</tr>
<tr>
<td>Fluid overload</td>
<td>Rapid infusion of IV fluid or blood causing circulatory overload</td>
<td>Respiratory distress: moist rales, crackles, tachypnea, dyspnea, orthopnea, cough, cyanosis Tachycardia, hypertension, distended neck veins, Elevated central venous pressure, agitation, puffy eyes</td>
<td>Slow infusion to KVO, notify MD, Elevate HOB, give O2, medications (diuretics, vasodilators, inotropics, morphine), monitor vitals, Weigh patient, Document all assessments</td>
</tr>
</tbody>
</table>

5.3 Complications
1. You receive, Mrs. Smith, a 76-year-old female patient S/P abdominal exploratory laparoscopy from the recovery. She is receiving lactate ringers continuously IV at 150mL/hr. Upon your initial assessment, you find that she has shortness of breath, bilateral rales, distended neck veins and blood pressure of 180/96. Based on her symptoms which complication is Mrs. Smith experiencing?
 e. Hyperkalemia
 f. Phlebitis
 g. Fluid Overload
 h. Medication adverse reaction

2. Which intervention would you choose to manage Mrs. Smith?
 e. Remove IV sight, apply warm moist compress, monitor sight 48 hours post removal for post infusion phlebitis
 f. Slow infusion of hypertonic solution
 g. Administer Bolus of 0.9 NS 20ml/kg over 30min
h. Slow infusion to KVO, notify MD, Elevate HOB, give O2, medications (diuretics, vasodilators, inotropics, morphine), monitor vitals, Weigh patient,

3. When performing IV insertion or phlebotomy, what is the correct angle that the needle should be inserted?
 a. 90-100 degrees
 b. 45-50 degrees
 c. 75-80 degrees
 d. 10-30 degrees

4. Which of the following are the right interventions for managing infiltration?
 a. Early detection imperative
 b. stop infusion and d/c IV site
 c. assess circulation and pulses
 d. apply warm compress for isotonic solution and cold for hypertonic
 e. All of the above

5. All of the following represent proper nursing documents in the event of IV insertion EXCEPT
 a. The specific location of the vein
 b. Patient tolerated well
 c. Date, time and name of the nurse starting the IV
 d. The number of attempts (even if one)
 e. Quotes from the patient regarding the procedure

6. A nurse who starts an intravenous infusion on a patient who has refused therapy could be charged with:
 a. battery.
 b. invasion of privacy.
 c. negligence.
 d. false imprisonment.

Answers: 1g, 2h, 3d, 4e, 5b, 6a

Chapter 6: Central Venous Catheters

CVCs Large bore catheters that are placed in the large veins of the central venous system (e.g., subclavian, brachiocephalic, innominate or iliac veins, or at the junction of one of these veins with the superior or inferior vena cava. CVCs allow you to infuse fluids directly into the central venous circulation when treatment options that are not generally accessible through standard peripheral intravenous access:

- Minimal or no peripheral access
- Continuous Vescant Infusions (chemotherapy)
- Length of prescribed therapy is 6 days or longer
Drug pH is below 5 or greater than 9
Continuous high pressure flow (rapid transfusion)

There are several types of catheters:

- PICC
- Non Tunneled Catheters – CVP, subclavian lines
- Tunneled (surgically burrowed through tissue) - Broviac
- Implanted Ports

Role of the RN

- Ensure aseptic/sterile technique is maintained during insertion
- Inspection of the catheter, dressing, and insertion site
- Evaluate the integrity of the catheter and monitor for microbial infection
- Changing the dressing and end caps flushing the lumen of the catheter, if required by facility protocol
- Ensure that Chest X-Ray is done to check proper placement of catheter tip in the super vena cava before it is used as a central line

Watch for signs and symptoms of pneumothorax:

- Cyanotic
- Drop in BP
- HR increased
- Lethargic
- Place patient in left Trendelenberg position, give O2 and call MD (Rapid Response)

Chapter 6 Review

1. Mr. Smith is diagnosed with Osteomyelitis. A PICC is inserted through his left cephalic vein before initiating 6 weeks of IV antibiotic therapy. A chest X-ray is done to confirm proper placement of the catheter tip. Where should the tip of the catheter be located?

 A. A. Midline
 B. B. Subclavian
 C. Super Vena Cava
 D. Right Atrium
Answers: 1C

References

Zerwekh, J., Claborn, J., Gaglione, T. Mosby’s Fluids and Electrolytes Memory Cards. Mosby 2009

Perivascular Nurse Consultants. Peripherally Inserted Central Catheters: Monitoring and Complication Management Program Pericascular Nurse Consultants, Inc. 2010

Transfusion Therapy. Lippincott Manual of Nursing Practice. LippincottWilliams and Wilkins 2010