Objective

• To give you enough of a “tickler” that will make you want to “be an adult learner”

• Give you ideas about key things you need to evaluate prior to prescribing these medications
 – Clinical
 – Legal

• What to consider when the “drug rep” brings around the “lunch” with the nice glossy sales data

Controlled Dangerous Substances (CDS)

• How do you define controlled?
 – Are all prescription medications “controlled”?

• What makes something dangerous?
 – Abuse potential
 – Addictive qualities
 – Adverse effects during therapeutic use
 – Adverse effects during abuse
 – Adverse effects in an over dose
 • Acute OD
 • Chronic OD
Which is more dangerous?

- diazepam or digoxin
- lorazepam or atenolol
- oxycodone or morphine
- morphine or acetaminophen
- diazepam or acetaminophen

Sedative Hypnotics
Benzodiazepines

- Widely prescribed group of medications
 - Many indications
 - Anxiety
 - Insomnia
 - Phobias
 - Panic disorder
 - Mania
 - Adjunctive use in chronic pain
 - Muscle rigidity/spasm/cramps
 - Cocaine intoxication
 - Sympathomimetic intoxication
 - Sedative-hypnotic withdrawal
 - Ethanol withdrawal
 - Nerve agent poisoning
 - Seizures

Pharmacology

- GABA (γ-aminobutyric acid) is an inhibitory neurotransmitter
 - Involved in sleep induction, inhibition of neuroexcitation, modulation of anxiety

- Benzodiazepine receptor is near the GABA receptor
 - Stimulation enhances GABA binding to its receptor

- Benzodiazepines
 - Potentiats (GABA)

GABA/ benzodiazepine receptor

- Complex molecule
 - Contains binding sites for several drugs
 - Has a chloride channel

Current Medicine, Inc, online
GABA/benzodiazepine receptor

- discrete receptor sites for
 - benzodiazepines, GABA, barbiturates, alcohol

Pharmacology

- GABA receptors
 - CNS in the basal ganglia, hippocampus, cerebellum, hypothalamus, and spinal cord
- GABA
 - involved in sleep induction, inhibition of neuroexcitation, modulation of anxiety
- GABA binds to its receptor
 - chloride ion channels open
 - influx of chloride into the neuronal cell
 - hyperpolarization of membrane potential
 - prevention or limiting the cell's response to excitatory stimuli

Pharmacology

- Overall
- Depressant effects of benzodiazepines are due to their potentiation of GABA inhibitory activity

Clinically
- impaired psychomotor skills, cognitive dysfunction, short-term memory impairment, sedation, and low-grade coma.

Individual agents

- How do they differ from one another?
 - Potency
 - Onset of action
 - Duration of action
 - Metabolism
 - Drug interactions
 - Adverse effects
 - More similar than different
 - Indication
 - Approved
 - Non-approved
Specific use

Insomnia

- Difficulty with the initiation, maintenance, duration, or quality of sleep
 - “results in the impairment of daytime functioning, despite adequate opportunity and circumstances for sleep”
- “difficulty with sleep maintenance”
 - implies waking after sleep has been initiated but before a desired wake time
- Difficulty with sleep initiation
 - a delay of more than 30 minutes in sleep onset

Common Rx agents used to treat
- benzodiazepines, benzodiazepine-receptor agonists, and sedating antidepressants

Common OTC agents used to treat
- Sedating antihistamines

Insomnia

- Common Rx agents used to treat
 - benzodiazepines, benzodiazepine-receptor agonists, and sedating antidepressants

- Common OTC agents used to treat
 - Sedating antihistamines

- Benzodiazepines and benzodiazepine-receptor agonists
 - proven efficacious in many clinical trials

- Improved
 - sleep latency, total sleep time, number of awakenings, and sleep quality

- Primarily for short-term insomnia
 - no studies extend beyond six months of use
Pharmacotherapy

- Things to focus in on
 - Time to onset
 - Duration of action
 - Class related side effects
 - Agent specific side effects
 - Agent specific interactions
 - Duration of use in clinical trials

Benzodiazepines

<table>
<thead>
<tr>
<th>Rx</th>
<th>Onset</th>
<th>Duration</th>
<th>use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temazepam (Restoril)</td>
<td>30-60 min</td>
<td>T1/2 (8-15 hrs) Intermediate</td>
<td>Sleep maintenance</td>
</tr>
<tr>
<td>Estazolam (ProSom)</td>
<td></td>
<td>(T1/2 10-24 hrs) Intermediate</td>
<td>Sleep maintenance</td>
</tr>
<tr>
<td>Triazolam (Halcion)</td>
<td>~ 30 min</td>
<td>(T1/2 2-5 hrs) Short</td>
<td>Sleep onset</td>
</tr>
</tbody>
</table>

Benzodiazepine Receptor agonists

<table>
<thead>
<tr>
<th>Rx</th>
<th>Onset</th>
<th>Duration</th>
<th>use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eszopiclone (Lunesta)</td>
<td>10 min</td>
<td>T1/2 (8-15 hrs) Intermediate</td>
<td>Sleep maintenance</td>
</tr>
<tr>
<td>Zolpidem (Ambien) CR</td>
<td>7-27 min</td>
<td>Short</td>
<td>Sleep onset</td>
</tr>
<tr>
<td>Zaleplon (Sonata)</td>
<td>30 min</td>
<td>Ultra Short</td>
<td>sleep-onset or sleep maintenance</td>
</tr>
</tbody>
</table>

Rebound insomnia

- Rare after the discontinuation of long-duration benzodiazepines
- Mild after discontinuation of intermediate-acting benzodiazepines
- Marked rebound insomnia reported after the discontinuation of triazolam
 - usually lasting one to three nights
- zolpidem
 - little or no rebound insomnia
- zaleplon
 - None noted
Tolerance

- Difficult to assess because most studies only last days to weeks

- Short-term tolerance
 - deterioration in sleep measures
 - has not been noted with 8 weeks of temazepam
 - Zolpidem continuously for 4 to 5 weeks or intermittently for 12 weeks
 - Zaleplon for 4 to 5 weeks.
 - 6 months of eszopiclone showed a sustained beneficial effect

ADRs

- More frequent in the elderly
- More frequent with interacting medications

- Day time sedation, dizziness, in-coordination
 - Most common after of long-acting benzodiazepines
 - Less with intermediate-acting agents
 - Rare with short-acting agents

- Use of long-acting benzodiazepines
 - has been associated with an increased risk of falls and hip fractures in older patients

ADRs

- drowsiness, fatigue
- confusion, weakness, and vertigo

Considerations in elderly

- Increased risk of falls, possible slowed reaction time
 - increased risk of motor vehicle accidents
 - anterograde amnesia
Choice of agent

- Zaleplon and zolpidem
 - shorter-acting agents have less risk of daytime sedation than benzodiazepines
- Often used for treatment of sleep onset insomnia
- Temazepam slower time to onset
 - treatment of sleep maintenance difficulties

Choice of agent

- Difficulty staying asleep
 - a hypnotic with a slower rate of elimination may be more appropriate
 - temazepam, estazolam, flurazepam

Metabolism

- Why is it important to understand metabolism/clearance?
 - Drug-drug interactions
 - Drug-disease state interactions
 - Prolonged action despite “short” t1/2

Pharmacokinetics
Why are they misused?
- To decrease unpleasant symptoms of stimulants or hallucinogens
- To self-treat withdrawal symptoms of other agents
- Often used to harm oneself/OD

Important facts
- Hypnotics should not be used with alcohol
 - Why?
- In general, pregnancy is a contraindication
- Benzodiazepines should be avoided in patients with known or possible sleep apnea
- Smaller doses should be used in elderly patients

Adverse effects
- Dose dependent
- Disease state dependent
- Co-medication/agent dependent

Adverse effects
- Respiratory depression or cardiovascular instability
 - Less likely to occur compared to many sedative-hypnotics
 - Increased risk if used with other CNS depressants or in large doses
Anxiety

- Oxidized to active metabolites
 - Diazepam
 - Chlordiazepoxide
 - Clorazepate
 - Prazepam
 - Clonazepam
 - inactive metabolites but long t1/2 (>20 hours).

- Excreted in the urine
 - Oxazepam, lorazepam
 - t1/2 ~12 hours
 - May not be detected on UDS

- oxidized via the cytochrome P4503A4
 - alprazolam (t1/2 11-16 hrs)

Anxiety

- Agents with “longer” duration of action than sedatives
 - Diazepam (Valium)
 - Alprazolam (Xanax)
 - Lorazepam (Ativan)

Acute seizures & status epilepticus
Acute seizures & status epilepticus

- Enhance inhibitory effect of GABA
 - binds to the benzodiazepine-GABA complex

 - Diazepam
 - Lorazepam
 - Midazolam

Diazepam

- Highly lipohilic
 - Enters the brain rapidly
 - Re-distribution after 15 to 20 minutes
 - reduces its clinical effect
- T1/2~ 24 hours
 - Cumulative effects a potential with repeated administration
- IV 5 to 10 mg per min
- Avoid IM
- Available as a rectal product
 - Diastat

Lorazepam

- Less lipophilic than diazepam
- Slower re-distribution half-life
 - 2-3 hrs vs 15 min. for diazepam
- binds with > affinity to the GABA receptor than diazepam
- longer duration of seizure control

Ethanol withdrawal
Ethanol withdrawal

- Chemical balance is maintained in the CNS through inhibitory and excitatory neurotransmitters
 - GABA
 - Inhibitory neurotransmitter
 - glutamate
 - major excitatory neurotransmitters
 - Acts through the N-methyl-D-aspartate (NMDA) neuroreceptor

- Alcohol
 - enhances the effect of GABA
 - decreased brain excitability
 - chronic exposure causes a compensatory decrease of GABA receptor response to GABA
 - evidenced by increasing tolerance of the effects of alcohol
 - Alcohol inhibits NMDA receptors
 - chronic alcohol use results in up-regulation of NMDA receptors

- Abrupt ethanol cessation
 - results in CNS hyperexcitability
 - receptors previously inhibited by alcohol are no longer inhibited
 - anxiety, irritability, agitation, and tremors
 - severe manifestations include alcohol withdrawal seizures and delirium tremens
 - Benzodiazepines and GABAergic agents
 - effective because of cross-tolerance with ethanol at the GABA receptor

- Benzodiazepines
 - safe and effective
 - preventing or treating seizures and delirium

- How do you choose a specific agent?
 - Efficacy studies
 - ADRs
 - Interactions
GABA/benzodiazepine receptor

Ethanol withdrawal: Choice of agent

• Pharmacokinetics
 – Diazepam & Chlordiazepoxide
 – Long t1/2
 – Active metabolites
 • Good vs bad
 • Liver disease
 – Withdrawal is smoother?
 – Rebound withdrawal symptoms are less likely to occur?
 – > risk of drug accumulation

Ethanol withdrawal: Choice of agent

• Lorazepam & Oxazepam
 – intermediate-acting
 – may be preferable in those that have decreased metabolizing capabilities?
 • elderly
 • liver disease

Abuse

• Combination of benzodiazepines and ethanol
 • dangerous
 • "date rape" drug
 • markedly impair functions that normally allow a person to resist sexual aggression
Typical ADRs

- Dose related
 - \(\text{dose} \rightarrow \text{effect} \)
 - well tolerated
 - drowsy
 - dizzy
 - Confusion
 - Blurred vision
 - Weakness
 - Slurred speech
 - Lack of coordination
 - coma

- Hypotension

- respiratory depression
 - Risk increased by co-administration of other medications

Physical and Psychological Dependence

- Abuse results in Physical and psychological dependence
 - vs

- Physical and psychological dependence results in abuse (continued abuse)

Physical and Psychological Dependence

- Abrupt discontinuation
 - withdrawal symptoms
 - Anxiety
 - Insomnia
 - Anorexia
 - Headaches
 - Weakness
 - seizures

- Withdrawal
 - Can occur in those taking normal doses for short periods
 - More common after longer periods of time

- Symptoms
 - usually develop at 3-4 days from last use
 - can appear earlier with shorter-acting varieties
Physical and Psychological Dependence

- **Symptoms**
 - usually develop at 3-4 days from last use
 - can appear earlier with shorter-acting agents
 - greater intensity for a shorter period of time
 - long half-life drugs have a later onset
 - less intense
 - more prolonged course

Signs of abuse

- Abuse of benzodiazepines
 - often mimic the indications they are prescribed for
 - Anxiety
 - Insomnia
 - Anorexia
 - Headaches
 - Weakness

Overdose

- How should an acute OD be managed?
 - Symptomatic supportive care
 - Flumazenil

Switch Gears
Narcolepsy

- Narcolepsy
 - “combination of excessive daytime sleepiness and abnormal manifestations of REM phenomena including cataplexy, sleep paralysis, and hypnagogic hallucinations”
 - rare ~140,000 people in the United States

Cataplexy

- Cataplexy
 - “to strike down”
 - common symptom of narcolepsy
 - sudden bilateral skeletal muscle weakness triggered by intense emotions
 - Laughter, anger, surprise, fear, embarrassment, excitement, sexual arousal
 - extremely variable both in severity and frequency
 - occasionally to many times a day
 - Loss of muscle tone

Cataplexy

- Loss of muscle tone
 - from mild to severe
 - lasting from a few seconds to several minutes
 - arm weakness
 - drooping head
 - generalized weakness
 - knee buckling
 - sagging jaw
 - slumping of the shoulders
 - slurred speech
 - complete cataplexy
 - all postural skeletal muscles are affected
 - paralysis and collapse
 - affect most basic activities of daily living
 - talking, eating, standing, walking, or driving
 - it can prevent patients from holding a child, interviewing for a job, participating in a meeting, going to a movie, attending a party, or working out at the gym

Xyrem (sodium oxybate)

- GHB
 - naturally occurring inhibitory neurotransmitter
 - hypnotic-anesthetic properties
 - indicated for the treatment of cataplexy in patients with narcolepsy
Xyrem (sodium oxybate)

- Anti-cataplectic mechanism of action of it is not known
 - Patients have disrupted sleep
 - Hypothesis is that poor sleep might contribute to their daytime symptoms

Xyrem (sodium oxybate)

- Rapid absorption
 - Rapid onset of its CNS depressant effects
 - Given at bedtime only, while in bed
 - For at least 6 hours after ingestion
 - Patients must not engage in hazardous activities requiring complete mental alertness or motor coordination
 - Operating machinery, driving a motor, vehicle, or flying an airplane

Xyrem (sodium oxybate)

- ADRs
 - Respiratory depression
 - Excess doses
 - Drug interactions
 - Confusion
 - Depression
 - Nocturnal incontinence
 - Sleepwalking
 - Reported in 7% of 448 patients clinical trials

Xyrem (sodium oxybate)

- FDA in 2002 for treatment of cataplexy in narcolepsy
- Available through the Xyrem Success Program (1-866-997-3688)
- Schedule I status to prevent illicit GHB use instituted in 2000
GHB abuse
- popularity starting in 1990s
 - nutritional supplement to enhance bodybuilding
 - recreationally at “rave” dance parties
 - date rape agent

Stimulants
- Amphetamine related agents
 - Structurally similar agents
 - Pharmacologically similar agents
- Uses have included
 - weight loss/control
 - Narcolepsy
 - Attention deficit disorder
 - Depression
 - Enhance alertness

What is the mechanism of action?
Amphetamine and related agents
Pharmacology

- Primary action
 - release of catecholamines from the presynaptic terminals
 - dopamine and norepinephrine

- Other mechanisms
 - Inhibit the reuptake of catecholamines
 - Increased release of serotonin (5-hydroxytryptamine, 5-HT)

Amphetamine and related agents
Pharmacology

- Slight alterations to chemical structure alters individual agents:
 - binding to receptor sites
 - location of action
 - pharmacokinetics
 - pharmacology

Amphetamines

- Slight alterations to chemical structure results in differences in clinical action
 - Appetite suppressant effects
 - Cardiovascular effects
 - Alertness
 - Hallucinogenic properties
<table>
<thead>
<tr>
<th>ADHD persistence into adulthood</th>
</tr>
</thead>
<tbody>
<tr>
<td>• met with skepticism</td>
</tr>
<tr>
<td>• studies demonstrate persistence into adulthood</td>
</tr>
<tr>
<td>• age-dependent decline in symptoms</td>
</tr>
<tr>
<td>• symptoms may result in significant impairments</td>
</tr>
<tr>
<td>• by 30–40 yo many with a Hx in childhood no longer meet criteria for ADHD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADHD</th>
</tr>
</thead>
<tbody>
<tr>
<td>• most prevalent childhood developmental disorder</td>
</tr>
<tr>
<td>• chronic condition</td>
</tr>
<tr>
<td>– impairs function both at home and in school</td>
</tr>
<tr>
<td>– frequently persists into adulthood</td>
</tr>
<tr>
<td>• sometimes not diagnosed until adulthood</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADHD persistence into adulthood</th>
</tr>
</thead>
<tbody>
<tr>
<td>• College students have unique challenges</td>
</tr>
<tr>
<td>• Structured days & smaller classes are not routine in college:</td>
</tr>
<tr>
<td>• schedules differ from day to day and classes have many more students</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADHD persistence into adulthood</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Many with ADHD who had good academic performance in elementary, middle, and high school often cannot cope in the college setting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADHD persistence into adulthood</th>
</tr>
</thead>
<tbody>
<tr>
<td>• “medications that are useful in the earlier years continue to be helpful in the adult years”</td>
</tr>
</tbody>
</table>
ADHD

- At least 2 separate classification systems used internationally to diagnose ADHD

- Common classification
 - Persistent hyperactivity, impulsivity and inattention that are divided into three subtypes:
 - primarily inattentive
 - primarily hyperactive/impulsive
 - combined in

- Diagnosis is based upon
 - structured clinical interview
 - symptoms rated by parents and teachers in different settings
 - diagnostic scales

- Very important to “confirm diagnosis” prior to ordering medication

Pharmacotherapy

- **Stimulants**
 - Methylphenidate

- **Tricyclic antidepressants**
 - Amitriptyline, Desipramine, Imipramine, Clomipramine, Nortriptyline

- **MAO inhibitors**
 - Phenelzine, Selegiline

- **Alpha 2 agonists**
 - Clonidine, Guanfacine

- **Others**
 - Atomoxetine, Modafinil, Bupropion
 - ?

Psychostimulants

- Large evaluation of the literature
 - no difference
 - methylphenidate vs dextroamphetamine
 - clinical benefit in 70–80% of patients
 - no differences between forms

- improvement in core symptoms
- response may very from patient to another
Pharmacokinetics

- Majority of stimulants
 - Short t1/2
 - Effective time
 - 3-6 hrs
 - Multiple doses/day needed
 - embarrassment for children
 » take a dose at the nurse’s office during school
 - adults forget to take midday doses
- Newer dosage forms
 - Sustained release

Dosing suggestions

- Start with lowest dosing available
 - Titrate up to “best dose” for outcome
 - Reduce dose if ADRs occur
 - “school days only” vs 7 days a week?

Psychostimulants ADRS

- loss of appetite and weight
 - Beneficial?
- insomnia
- motor tics
- Rarely, with high doses
 - psychotic reactions, mood disturbances, hallucinations.

<table>
<thead>
<tr>
<th>Name</th>
<th>Duration</th>
<th>Dose schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylphenidate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ritalin, Metadate, Methylin</td>
<td>5–20 mg BID to TID</td>
<td></td>
</tr>
<tr>
<td>Intermediate-acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ritalin SR, Metadate ER, Methylin ER)</td>
<td>3-8 hr 20–40 mg QD or 40 mg in the AM and 20 mg in the afternoon</td>
<td></td>
</tr>
<tr>
<td>Extended Release</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Concerta, Metadate CD, Ritalin LA)</td>
<td>8-12 hr 18–72 mg QD</td>
<td></td>
</tr>
<tr>
<td>Amphetamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Dexedrine, Dextrostat)</td>
<td>5–15 mg BID or 5–10 mg TID</td>
<td></td>
</tr>
<tr>
<td>Intermediate-acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Adderall, Dexedrine spansule)</td>
<td>6-8 5–30 mg QD or 5–15 mg BID</td>
<td></td>
</tr>
<tr>
<td>Extended Release</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adderall-XR</td>
<td></td>
<td>10-30 mg QD</td>
</tr>
</tbody>
</table>
Psychostimulants-Concern

- Methylphenidate
 - Sudden Death
 - Association is possible
 - Several had underlying heart disease

- Psychostimulants-Concern
 - Is there an increase in the risk of substance abuse in later life?
 - Low levels of drug abuse reported in ADHD treated
 - Meta-analysis found that untreated ADHD adolescents were at a much higher risk of developing drug abuse

Psychostimulants-Height

- Growth continues
 - Transient delays associated with
 - ADHD vs pharmacotherapy
 - Overall height appears to be unaffected if treatment is discontinued in adolescence

- Monitor growth in children treated with stimulant drugs

Psychostimulants

- Other concerns
 - Tics
 - Early reports showed > risk in patients with tics or family history of tics
 - Recent data ? the previous data
 - New data does not demonstrate the > risk
Psychostimulants

- Methylphenidate
 - “contraindicated in those with seizure disorder”
 - ? Real risk vs lack of data

Medication failure

- Define ?
 - Almost all children will respond to at least one agent if “tried in a systematic way”

CONTROLLED SUBSTANCES

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Insignia</th>
<th>Characteristics</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (C I)</td>
<td>![Controlled Substance Icon]</td>
<td>High abuse potential. May lead to severe dependence.</td>
<td>Heroin, Marijuana, Psycoke</td>
</tr>
<tr>
<td>II (C II)</td>
<td>![Controlled Substance Icon]</td>
<td>High abuse potential. May lead to severe dependence.</td>
<td>Morphine, Codeine, Methadone, Amphetamine</td>
</tr>
<tr>
<td>III (C III)</td>
<td>![Controlled Substance Icon]</td>
<td>Abuse potential less than Schedules I & II. May lead to moderate dependence.</td>
<td>Drugs that are combinations of opiate and non-opiate drugs, i.e., Tylenol® with codeine (Tylenol® w/C)</td>
</tr>
<tr>
<td>IV (C IV)</td>
<td>![Controlled Substance Icon]</td>
<td>Moderate abuse potential. May lead to limited dependence.</td>
<td>Valium®, Mavnav®, Phenobarbital</td>
</tr>
<tr>
<td>V (C V)</td>
<td>![Controlled Substance Icon]</td>
<td>Small abuse potential. May lead to limited dependence.</td>
<td>Cough medications with codeine, certain antidiarrheals</td>
</tr>
</tbody>
</table>

Update on the Pharmacotherapy of Pain

Bruce Ruck, BS, Pharm.D.
Director of Drug Information & Professional Education
New Jersey Poison Information and Education System
How do you define pain?

How DO you define pain?

- Pain is what ever the patient says it is!

Who Experiences Pain?

- All ages
- Children
- Geriatrics
What are the common causes of analgesics failure?

Common causes of analgesic failure
- Improper conversion
 - between medications and routes of administration
- Prejudice
 - against a specific class of medication
 - against a specific medication

Barriers to Effective Pain Management
- Legal
 - Actual
 - Perceived
- Patient
- Health Care Professional
- Society
Barriers to Effective Pain Management

- Perceived
- Someone will report me
 - So What!!!!!!!!

Analgesic use

The right medication at the right dose at the right time can relieve almost all pain.

Analgesic Classes

- Opioids
- Non-opioids
 - APAP, NSAIDs
- Analgesic adjuncts
 - TCA’s, carbamazepine, Gabapentum

Opioids

Is one agent more efficacious than another?
Opioids

- Equal efficacy when you account for:
 - Differences in bioavailability
 - Differences in potency

Meperidine

Avoid

- Accumulation of metabolite in those with:
 - Renal insufficiency
 - Long term use
 - High doses
- Tremors
- Seizures
- Myoclonus

Opioids

- Is one agent more toxic than another?

- Is one route superior to another?
Is one route superior to another?

- Not when you:
 - “manage” pain
 - Account for differences in bioavailability

Choosing a route of administration

- Ease of use
- Interference with lifestyle
- Nausea-vomiting
- NPO
- IV access

Oral

- Efficacious
- Convenient
- Relatively cheap

Oral

- Efficacious
- Convenient
- Relatively cheap
IM
- Avoid
- Painful
- Sterile abscess
- No advantage compared to IV

Topical
- Convenient
- Titration difficult
- Patient must be able to take oral prn meds
- Used once stabilized on a “oral/parental dose”

Equal analgesic dosing (mg)

<table>
<thead>
<tr>
<th>Med</th>
<th>Oral</th>
<th>Parenteral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>30-60</td>
<td>10</td>
</tr>
<tr>
<td>Meperidine</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>Methadone</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>7.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Codeine</td>
<td>200</td>
<td>NA</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>30</td>
<td>NA</td>
</tr>
</tbody>
</table>

Opioids
- Frequency of dosing
 - Around the clock vs prn
 - Short acting vs long acting
Opioids

ADRs
- Constipation
- Sedation
- N/V
- Urinary retention
- Allergy

Opioids Interactions

- **Pharmacodynamic**
 - Medications that increase sedation or respiratory depression

- **Pharmacokinetic**
 - Avinza (morphine sulfate extended-release capsules)
 - Do not consume alcoholic beverages or medications containing alcohol while on AVINZA therapy
 - may result in the rapid release and absorption of a potentially fatal dose of morphine.

Opioids

- Physical addiction
- Psychological addiction
- Pseudo-addiction

Opioids

- “M” word
 - Vs
 - “O” word
Opioids

- Diseases progress
- Tolerance develops
- 1st time you see a patient is not the 1st time they are being seen

Barriers to Effective Pain Management

- Perceived
 - Someone will report me
 - So What!!!!!!!

Barriers to Effective Pain Management

- Actual
 - Maximum quantities ordered
 - Documentation of necessity
 - Does not differ from any other disease state

Barriers to Effective Pain Management

- Perceived
 - Legal
 - Cannot treat a patient for pain that has a non-terminal illness with a CDS:
 - For a long time/rest of life
 - For more than a few days-weeks
 - With a Hx of abuse

- NOT TRUE
<table>
<thead>
<tr>
<th>RX Changes For Chronic Pain</th>
<th>RX Changes For Chronic Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Schedule II CDS</td>
<td>• Schedule II CDS</td>
</tr>
<tr>
<td>• Quantity not > 120 dosage units or 30 day supply</td>
<td>• Quantity > 120 dosage units</td>
</tr>
<tr>
<td>Unless</td>
<td>Not to exceed a 30 day supply</td>
</tr>
<tr>
<td>• Patient has pain from cancer</td>
<td>• Patient has pain from cancer</td>
</tr>
<tr>
<td>• Intractable pain</td>
<td>• Intractable pain</td>
</tr>
<tr>
<td>• Terminal Illness</td>
<td>• Terminal Illness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RX Changes For Chronic Pain</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• When prescribed for >/= 3 months</td>
<td>• Medical history</td>
</tr>
<tr>
<td>• Review of treatment course, progress, pain etiology</td>
<td>• Physical Exam</td>
</tr>
<tr>
<td>• Document problems associated with therapy</td>
<td>• Psychological function</td>
</tr>
<tr>
<td>• Periodically re-assess needs and try to D/C medications if clinically appropriate</td>
<td>• Underlying/coexisting disease</td>
</tr>
<tr>
<td></td>
<td>• Hx of substance abuse</td>
</tr>
</tbody>
</table>
Documentation

<table>
<thead>
<tr>
<th>Frequency and Severity of Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain scale</td>
</tr>
<tr>
<td>– Visual analogue</td>
</tr>
<tr>
<td>– Faces</td>
</tr>
<tr>
<td>– Ruler</td>
</tr>
<tr>
<td>• 1-10</td>
</tr>
<tr>
<td>• 1-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recognized medical indication for use of the medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete name of medication</td>
</tr>
<tr>
<td>Dose, strength, frequency</td>
</tr>
<tr>
<td>Instructions for use</td>
</tr>
</tbody>
</table>

Amphetamines and Sympathomimetics

- Laws do not address the use as an adjunct to opiates
- Used to decrease the sedative effects of the opiates
 - High dose opiates in the terminal patient

Bupinorphine

Bruce Ruck, Pharm.D.
Director Drug Information and Professional Education New Jersey Poison Information and Education System
buprenorphine

- Buprenorphine is an opioid agonist/antagonist (partial agonist)
 - agonist at the mu-opioid receptor
 - antagonist at the kappa-opioid receptor

- Can produce typical opioid agonist effects and side effects
 - Ceiling effect is present
 - Pain relief, euphoria and respiratory depression

buprenorphine

- Partial antagonists
 - Can precipitate the opioid withdrawal syndrome
 - Dysphoric mood
 - Nausea or vomiting
 - Muscle aches/cramp
 - Lacrimation
 - Rhinorrhea
 - Pupillary dilation
 - Sweating
 - Piloerection
 - Diarrhea
 - Yawning
 - Mild fever
 - Insomnia
 - Craving
 - Distress/irritability

buprenorphine

- Subutex (buprenorphine)
- Suboxone (buprenorphine/naloxone)

- Approved for the treatment of opiate dependence 10/02
 - treat opiate addiction by preventing symptoms of withdrawal from heroin and other opiates
 - reduces cravings

Subutex and Suboxone

- first opioid approved for office based treatment of opiate/opioid dependence
 - Used under the Drug Addiction Treatment Act (DATA) of 2000
 - Previously opiate dependence treatments could be dispensed in clinics that specialize in addiction treatment
Subutex and Suboxone

- Goal is to provide patients greater access to needed treatment
- Each physician is limited in the number of patients they are allowed to treat
- Special DEA registration for the use of this drug is needed

buprenorphine

- Subutex (buprenorphine) – for use at the beginning of treatment of opiate/opioid abuse
- Suboxone (buprenorphine/naloxone) – maintenance treatment of opiate addiction
 - Naloxone to decrease the risk of intravenous abuse of buprenorphine by individuals physically dependent on opiates

buprenorphine

- Suboxone (buprenorphine/naloxone)
 - 4:1 buprenorphine:naloxone
 - maintenance treatment of opiate addiction
 - Naloxone to decrease the risk of intravenous abuse of buprenorphine by individuals physically dependent on opiates
 - help discourage diversion and misuse

Buprenorphine/naloxone

- Why was naloxone added?
 - decrease the risk of IV abuse by those physically dependent on opiates
 - No significant effect when given sublingually
 - Poor bioavailability
 - Parenterally
 - opioid antagonist actions were similar to naloxone
Subutex and Suboxone

- **SUBOXONE**
 - uncoated tablet for sublingual administration
 - 2 mg buprenorphine with 0.5 mg naloxone
 - 8 mg buprenorphine with 2 mg naloxone

- **SUBUTEX**
 - uncoated tablet for sublingual administration
 - 2 mg buprenorphine
 - 8 mg buprenorphine

Subutex and Suboxone

- **Drug-drug interactions**
 - CYP 3A4 Inhibitors and Inducers may alter kinetics
 - CYP 3A4 inhibitors may increase buprenorphine levels
 -azole antifungal agents (e.g., ketoconazole)
 -macrolide antibiotics (e.g., erythromycin)
 -HIV protease inhibitors (e.g. ritonavir, indinavir and saquinavir)
 - CYP 3A4 inducers has not been investigated; closely monitor if inducers of CYP 3A4 are given
 - phenobarbital, carbamazepine, phenytoin, rifampicin

Subutex and Suboxone

- **DOSAGE**
 - 12-16 mg once a day sublingually
 - clinical effects between formulations are interchangeable
 - SUBUTEX
 - no naloxone
 - preferred during induction
 - SUBOXONE
 - for continued use

- **DOSAGE**
 - If using more than two tablets place all the tablets SL at once or place 2 at a time
 - swallowing tablets decrease bioavailability
Induction:
- Avoid precipitating withdrawal
 - Start when objective and clear signs of withdrawal are evident
 - Want patient in mild withdrawal
- One method
 - 8 mg of SUBUTEX on Day 1 and 16 mg SUBUTEX on Day 2
 - Day 3 onward patients received SUBOXONE tablets at the same buprenorphine dose as Day 2
 - Induction accomplished over 3-4 days depending on the target dose
 - To prevent patient from giving up titrate to clinical effects ASAP

Induction
- **Heroin or users of short-acting opioids**
 - SUBUTEX
 - Should be given at least 4 hours after the patients last used opioids
 - preferably when early signs of opioid withdrawal appear

Induction
- **long acting opioids**
 - withdrawal more likely during induction
 - > risk in patients maintained on higher doses of methadone (>30 mg)
 - when the first buprenorphine dose is administered shortly after the last methadone dose

Maintenance
- SUBOXONE is preferred
- naloxone is present

Recommended target dose
- 16 mg/day adjusted in increments / decrements of 2 mg or 4 mg to a dose that prevents opioid withdrawal effects
- range of 4 to 24 mg/day depending on the individual
Suboxone

- Reducing dosage and stopping treatment:
 - gradual and abrupt discontinuation have been used

- Which is best
 - ?

• Any?